854 research outputs found

    On Making Emerging Trusted Execution Environments Accessible to Developers

    Full text link
    New types of Trusted Execution Environment (TEE) architectures like TrustLite and Intel Software Guard Extensions (SGX) are emerging. They bring new features that can lead to innovative security and privacy solutions. But each new TEE environment comes with its own set of interfaces and programming paradigms, thus raising the barrier for entry for developers who want to make use of these TEEs. In this paper, we motivate the need for realizing standard TEE interfaces on such emerging TEE architectures and show that this exercise is not straightforward. We report on our on-going work in mapping GlobalPlatform standard interfaces to TrustLite and SGX.Comment: Author's version of article to appear in 8th Internation Conference of Trust & Trustworthy Computing, TRUST 2015, Heraklion, Crete, Greece, August 24-26, 201

    Profiling Users by Modeling Web Transactions

    Full text link
    Users of electronic devices, e.g., laptop, smartphone, etc. have characteristic behaviors while surfing the Web. Profiling this behavior can help identify the person using a given device. In this paper, we introduce a technique to profile users based on their web transactions. We compute several features extracted from a sequence of web transactions and use them with one-class classification techniques to profile a user. We assess the efficacy and speed of our method at differentiating 25 users on a dataset representing 6 months of web traffic monitoring from a small company network.Comment: Extended technical report of an IEEE ICDCS 2017 publicatio

    Citizen Electronic Identities using TPM 2.0

    Full text link
    Electronic Identification (eID) is becoming commonplace in several European countries. eID is typically used to authenticate to government e-services, but is also used for other services, such as public transit, e-banking, and physical security access control. Typical eID tokens take the form of physical smart cards, but successes in merging eID into phone operator SIM cards show that eID tokens integrated into a personal device can offer better usability compared to standalone tokens. At the same time, trusted hardware that enables secure storage and isolated processing of sensitive data have become commonplace both on PC platforms as well as mobile devices. Some time ago, the Trusted Computing Group (TCG) released the version 2.0 of the Trusted Platform Module (TPM) specification. We propose an eID architecture based on the new, rich authorization model introduced in the TCGs TPM 2.0. The goal of the design is to improve the overall security and usability compared to traditional smart card-based solutions. We also provide, to the best our knowledge, the first accessible description of the TPM 2.0 authorization model.Comment: This work is based on an earlier work: Citizen Electronic Identities using TPM 2.0, to appear in the Proceedings of the 4th international workshop on Trustworthy embedded devices, TrustED'14, November 3, 2014, Scottsdale, Arizona, USA, http://dx.doi.org/10.1145/2666141.266614

    ABAKA : a novel attribute-based k-anonymous collaborative solution for LBSs

    Get PDF
    The increasing use of mobile devices, along with advances in telecommunication systems, increased the popularity of Location-Based Services (LBSs). In LBSs, users share their exact location with a potentially untrusted Location-Based Service Provider (LBSP). In such a scenario, user privacy becomes a major con- cern: the knowledge about user location may lead to her identification as well as a continuous tracing of her position. Researchers proposed several approaches to preserve users’ location privacy. They also showed that hiding the location of an LBS user is not enough to guarantee her privacy, i.e., user’s pro- file attributes or background knowledge of an attacker may reveal the user’s identity. In this paper we propose ABAKA, a novel collaborative approach that provides identity privacy for LBS users considering users’ profile attributes. In particular, our solution guarantees p -sensitive k -anonymity for the user that sends an LBS request to the LBSP. ABAKA computes a cloaked area by collaborative multi-hop forwarding of the LBS query, and using Ciphertext-Policy Attribute-Based Encryption (CP-ABE). We ran a thorough set of experiments to evaluate our solution: the results confirm the feasibility and efficiency of our proposal

    Open-TEE - An Open Virtual Trusted Execution Environment

    Full text link
    Hardware-based Trusted Execution Environments (TEEs) are widely deployed in mobile devices. Yet their use has been limited primarily to applications developed by the device vendors. Recent standardization of TEE interfaces by GlobalPlatform (GP) promises to partially address this problem by enabling GP-compliant trusted applications to run on TEEs from different vendors. Nevertheless ordinary developers wishing to develop trusted applications face significant challenges. Access to hardware TEE interfaces are difficult to obtain without support from vendors. Tools and software needed to develop and debug trusted applications may be expensive or non-existent. In this paper, we describe Open-TEE, a virtual, hardware-independent TEE implemented in software. Open-TEE conforms to GP specifications. It allows developers to develop and debug trusted applications with the same tools they use for developing software in general. Once a trusted application is fully debugged, it can be compiled for any actual hardware TEE. Through performance measurements and a user study we demonstrate that Open-TEE is efficient and easy to use. We have made Open- TEE freely available as open source.Comment: Author's version of article to appear in 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2015, Helsinki, Finland, August 20-22, 201
    • …
    corecore